Nonlinear gradient estimates for double phase elliptic problems with irregular double obstacles

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori error estimates for nonlinear problems. Lr-estimates for finite element discretizations of elliptic equations

— We extend the gênerai framework of [18] for deriving a posteriori error estimâtes for approximate solutions of noniinear elliptic problems such ihat it also yields L'-error estimâtes. The gênerai results are applied to finite element discretizations of scalar quasilinear elliptic pdes of 2nd order and the stationary incompressible Navier-Stokes équations. They immediately yield a posteriori e...

متن کامل

Lorentz estimates for the gradient of weak solutions to elliptic obstacle problems with partially BMO coefficients

We prove global Lorentz estimates for variable power of the gradient of weak solution to linear elliptic obstacle problems with small partially BMO coefficients over a bounded nonsmooth domain. Here, we assume that the leading coefficients are measurable in one variable and have small BMO semi-norms in the other variables, variable exponents p(x) satisfy log-Hölder continuity, and the boundarie...

متن کامل

A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems

The effect of numerical quadrature in finite element methods for solving quasilinear elliptic problems of nonmonotone type is studied. Under similar assumption on the quadrature formula as for linear problems, optimal error estimates in the L2 and the H1 norms are proved. The numerical solution obtained from the finite element method with quadrature formula is shown to be unique for a sufficien...

متن کامل

Error estimates for finite element approximations of nonlinear monotone elliptic problems with application to numerical homogenization

We consider a finite element method (FEM) with arbitrary polynomial degree for nonlinear monotone elliptic problems. Using a linear elliptic projection, we first give a new short proof of the optimal convergence rate of the FEM in the L norm. We then derive optimal a priori error estimates in the H and L norm for a FEM with variational crimes due to numerical integration. As an application we d...

متن کامل

A Boundary Blow-up for Sub-linear Elliptic Problems with a Nonlinear Gradient Term

By a perturbation method and constructing comparison functions, we show the exact asymptotic behaviour of solutions to the semilinear elliptic problem ∆u− |∇u| = b(x)g(u), u > 0 in Ω, u ̨̨ ∂Ω = +∞, where Ω is a bounded domain in RN with smooth boundary, q ∈ (1, 2], g ∈ C[0,∞) ∩ C1(0,∞), g(0) = 0, g is increasing on [0,∞), and b is non-negative non-trivial in Ω, which may be singular or vanishing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2019

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc/14532